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Abstract It is well-known that near an infinite linear array of periodically spaced cylinders trapped
waves of certain eigenfrequencies can exist. If there are only a finite number of cylinders in an infinite
sea, trapping is imperfect. Simple harmonic incident waves can excite a nearly trapped wave at one of
the eigenfrequencies through a linear mechanism. However, the maximum amplification ratio increases
monotonically with the number of the cylinders; hence the solution is singular in the limit of infinitely
many cylinders. Recently, a nonlinear theory of subharmonic resonance of perfectly trapped waves has
been completed. In this article the theory is further extended to random incident waves with a narrow
spectrum centered near twice the natural frequency of the trapped wave. The effects of detuning and
bandwidth of the spectrum are examined.

Keywords Landau–Stuart equation · Nonlinear resonance · Subharmonic resonance · Trapped wave

1 Introduction

Trapping of sinusoidal water waves, either by a stationary body in a channel or by an infinite and periodic
array of bodies, has been extensively treated in the linearized framework by Evans and his associates in
the past decade [1–7]. When trapping is perfect, these modes cannot be resonated by incident waves of the
same frequency, according to the linearized theory. If there is only a finite number of periodically spaced
cylinders in an infinite sea, then trapping is imperfect and synchronous resonance can be predicted by a
linear theory [8].
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In coastal oceanography it is known that perfectly trapped edge waves can also be present on a sloping
beach of infinite length. Laboratory experiments by Galvin [9] have shown that an edge wave can be
resonated nonlinearly by a sinusoidal incident wave of twice the edge-wave frequency. This observation
has been explained by a nonlinear theory [10–13]. Of more recent interest in coastal engineering is the case
of mobile barriers proposed for the inlets of Venice Lagoon for protecting the famed city from storm tides.
Each of the four planned barriers is a series of 20 closely aligned hollow gates across an inlet. All gates
are allowed to swing about a common axis on the seabed to reduce the forces on the supporting structure
and the foundation, but are otherwise unattached to one another. It was, however, found in the laboratory
that normally incident sea waves can force the neighboring gates to oscillate in opposite phases, at half the
frequency. The cause for this undesirable oscillation was later found to be the existence of trapped modes
owing to the periodic and mobile construction [14]. A nonlinear theory for monochromatic incident waves,
similar to the subharmonic resonance of edge waves, has been given in [15], and confirmed by laboratory
experiments. Chaotic response to deterministic narrow-banded incident waves was also found theoreti-
cally and verified by experiments [16]. For a somewhat more idealized barrier geometry and shallow water
waves, Vittori [17] reported a stochastic theory for the excitation of gate oscillations by random incident
waves with a narrow frequency band.

Recently we have completed a nonlinear theory for subharmonic resonance of monochromatic waves
trapped by a vertical cylinder in a channel. The geometry is equivalent to one period in an infinite array
of periodically spaced cylinders. The evolution equation for the amplitude of the trapped mode is found
analytically to be a Landau–Stuart equation governing other trapped-wave resonance problems. The main
task of calculating the coupling coefficients is achieved by solving a number of scattering or radiation prob-
lems. By numerical solution of these problems, the effects of the geometry on the resonance characteristics
have been examined.

In this article we examine the response to random incident waves with a narrow frequency band. The
spectrum is assumed to be Gaussian with prescribed bandwidth. The spectral peak is assumed to be slightly
detuned from twice the eigenfrequency of the trapped mode. Because of the narrowness of the frequency
band, the incident-wave amplitude is a slowly varying, though random, function of time. As a consequence,
the amplitude of the trapped wave is also a slowly varying random function of time, governed by the
Landau–Stuart equation which is of the same form as that for the deterministic problem. From many
numerical solutions of the stochastic equation we shall examine statistically the averaged growth rate and
averaged final amplitude as functions of detuning and spectral band width.

2 Summary of the deterministic theory

We consider a bottom-mounted circular cylinder of radius a′ fixed at the center of a channel of width 2d′
and depth h′. Let a Cartesian coordinate system be chosen such that the (x′, y′)-plane coincides with the
still free surface and z′ points upward along the cylinder axis, as shown in Fig. 1. A train of plane waves of
amplitude A′

I arrives along the positive x′-axis and interacts with the cylinder.
For convenience we first outline the steps that lead to the evolution equation in the deterministic case.
Let the fluid be incompressible and inviscid, and the flow be irrotational. Denoting the ratio of the

incident wave amplitude A′
I and the channel half-width1 d′ as ε2(=A′

I/d′). It can be reasoned that the

trapped-wave amplitude is of order O(A′
I/ε) = O

(√
A′

Id′
)

if resonated by incident waves of amplitude

A′
I . After normalization the free surface conditions are expanded in powers of ε to the third order. At the

leading order only the trapped wave is present. The eigenfunction and the eigenfrequency are found by the
hybrid finite-element method, where the solution is represented analytically by eigenfunction expansions

1 The channel width 2d′ can be thought of as the center-to center spacing of a periodic array of cylinders.
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Fig. 1 Circular cylinder
in a open channel

away from the cylinder but by discrete finite elements near the cylinder. At the second order, the scat-
tered waves due to incoming waves of frequency 2ω′

0 are calculated. Due to quadratic interactions of the
trapped wave with itself, there are radiated waves of frequency 2ω′

0 also. At the third order, cross-interac-
tion between the first-order trapped waves and the second-order incident/scattered waves creates forcing
which is oscillatory in time at the frequency ω′

0. The condition for the solvabilty of the corresponding
inhomogeneous boundary-value problem leads to the evolution equation for the complex amplitude B′ of
the trapped wave.

Let the following dimensionless variables be used,

t =
√

g
d′ t′, (x, y, z, h) = (x′, y′, z′, h′)

d′ , k = k′d′,

(ζ , B) = (ζ ′, B′)√
A′

Id′
, A = A′

I

ε

√
A′

Id′
= 1, � = �′

d′
√

gA′
I

, (2.1)

where ζ ′ denotes the free-surface displacement and B′ is the amplitudes of the trapped wave. At the leading
order the dimensionless potential of the trapped waves can be written as

� = B
2iω0

cosh k0(z + h)

cosh k0h
η(x, y)e−iω0t + c.c., (2.2)

where c.c. represents the complex conjugate of the preceding term. The dimensionless evolution equation
for B is found to be the Landau–Stuart equation

− i
dB
dτ

= cαB2B∗ + cγ AB∗, (2.3)

where τ = ε2t and A = 1. The coefficients are

cα = 1
E

9∑
i=2

∫ ∫

SF

αiIm(η)dS, cγ = 1
E

4∑
i=2

∫ ∫

SF

γiIm(η)dS, (2.4)

where

E =
∫ ∫

SF

(
Im(η)

)2dS. (2.5)

The coefficients αi(x, y) and γi(x, y) depend on the geometry and are discussed in detail in [18].

3 The stochastic problem

3.1 Random incident wave

For clarity we first describe the random incident waves in terms of physical variables distinguished by primes.
Let the incident wave be a homogeneous, stationary random process, described by a Fourier–Stieltjes
integral [19–21]
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ζ ′(x′, t′) =
∫ ∞

−∞
ei(k′x′−ω′t′)dA ′(ω′), (3.1)

where ω′ is the frequency and k′ is the wavenumber satisfying the dispersion relation

ω′2 = gk′ tanh k′h′. (3.2)

Because of stationarity, the covariance between two random variables dA ′(ω′) and dA ′(ω′
1) is

〈
dA ′(ω′)dA ′∗(ω′

1)
〉 = δ(ω′ − ω′

1)S
′(ω′)dω′dω′

1, (3.3)

where the angle brackets denote the ensemble average. S′(ω′) is the spectral density, which is real,
non-negative and even, S′(−ω′) = S′(ω′).

In (3.1), dA (ω′) can be seen as the complex amplitude of the component wave of frequency between ω′
and ω′ + dω′. The reality of ζ ′ implies the following symmetry

dA ′(−ω′) = dA ′∗(ω′). (3.4)

Thus, we can decompose (3.1) into two parts

ζ ′(x′, t′) =
∫ ∞

0
ei(k′x′−ω′t′)dA ′(ω′) +

∫ 0

−∞
ei(k′x′−ω′t′)dA ′(ω′), (3.5)

where the second integral can be shown to be the complex conjugate of the first. The wave energy con-
tained in the frequency range 0 < ω′ < ∞ and −∞ < ω′ < 0 are equal. Hence half of the total energy
is, by using (3.3)

〈
ζ ′ζ ′∗〉 ∣∣

ω′>0=
∫ ∞

0

∫ ∞

0
dω′dω′

1

〈
dA ′(ω′)dA ′(ω′

1)
〉 =

∫ ∞

0
S′(ω′)dω′ = 1

2

∫ ∞

−∞
S′(ω′)dω′. (3.6)

and can be used to define the characteristic amplitude of the random incident wave

A′
I =

(
2
∫ ∞

−∞
S′(ω′)dω′

) 1
2

. (3.7)

The small parameter ε is still defined in terms of the new A′
I by

ε =
√

A′
I

d′ � 1, or ε2 = A′
I

d′ . (3.8)

Now we assume in addition that the incident-wave spectrum has a narrow bandwidth of order O(ε2ω′
0).

The spectral density S′(ω′) peaks at 2ω′
0 + ε22
′ and decays rapidly away from the peak. 2ε2
′ is the

detuning frequency. By the transformation

ω′ = ±
(

2ω′
0 + ε2(2
′ + σ ′)

)
, for ω′ ≷ 0, (3.9)

we can change the argument of dA ′ from ω′ to σ ′. Accordingly, the free-surface displacement (3.5)
becomes

ζ ′(x′, t′) = e−2i(ω′
0+ε2
′)t′

∫ ∞

−2ω′
0/ε

2−2
′
ei(k′x′−ε2σ ′t′)dA ′(σ ′) + c.c.. (3.10)

The lower limit of the integral in (3.10) is a large value of the order O(ε−2) and can be replaced by −∞ in
view of the assumption that the spectrum diminishes rapidly away from 2ω′

0. Note that the first integral in
(3.10) includes only the contribution from the positive half of the two-sided spectrum S′. It follows from
(3.3) and the identity δ(λx) = δ(x)/|λ|, where λ is a constant, that the covariance of dA ′(σ ′) obeys
〈
dA ′(σ ′)dA ′∗(σ ′

1)
〉 = ε2δ(σ ′ − σ ′

1)S̃
′(σ ′)dσ ′dσ ′

1. (3.11)
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where

S̃′(σ ′) =
{

S′
(

2ω′
0 + ε2(2
′ + σ ′)

)
, σ ′ > −2ω′

0/ε
2 − 2
′,

0, otherwise,
(3.12)

takes non-zero values only in the positive half of the frequency range of ω′.
Consequently, Eq. (3.6) becomes

〈
ζ ′ζ ′∗〉 ∣∣

ω′>0=
∫ ∞

−∞

∫ ∞

−∞
dσ ′dσ ′

1

〈
dA ′(σ ′)dA ′(σ ′

1)
〉 = ε2

∫ ∞

−∞
S̃′(σ ′)dσ ′ = 1

2

∫ ∞

−∞
S′(ω′)dω′, (3.13)

which indicates that the incident-wave energy is of the order of O(ε2) and hence small.

3.2 Normalized incident waves

Using A′
I defined in (3.7) as the scale of the incident wave, we introduce the following normalized variables

in addition

(ω, 
, ωo, σ) =
√

d′
g

(ω′, 
′, ω′
o, σ ′), k = k′d′,

dA = 2dA ′

A′
I

, S̃ = 4g
1
2

A′
Id′ 3

2

S̃′.

The purpose of using the factors 2 and 4 in the scales of dA ′ and S̃′, respectively, will become clear shortly.
In dimensionless variables, the free-surface displacement (3.10) becomes,

ζ(x, t) = ε

2
e−2iω0te−2i
τ

∫ ∞

−∞
ei(kx−στ)dA (σ ) + c.c. + O(ε4), (3.14)

where τ = ε2t is the slow time variable. The wavenumber k is related to ω by the dimensionless form of
the dispersion relation (3.2)

k tanh kh = ω2. (3.15)

Letting

k = K + ε2K2 + O(ε4), (3.16)

we can easily find from (3.9) and (3.15) that

K tanh Kh = 4ω2
0, K2 = 4ω(σ + 2
)

tanh Kh + Kh(1 − tanh2 Kh)
. (3.17)

Therefore by substituting (3.16) in (3.14), we get, up to the second order

ζ(x, t) = ε

2

{
e−2i
τ

∫ ∞

−∞
ei(K2x2−στ)dA (σ )

}
ei(Kx−2ω0t) + c.c., (3.18)

with x2 = ε2x the slow spatial coordinate. Near the cylinder, we set x2 = 0. Moreover, let us introduce

A(τ ) = e−2i
τ

∫ ∞

−∞
e−iστ dA (σ ) = Âe−2i
τ , where Â =

∫ ∞

−∞
e−iστ dA (σ ), (3.19)

as the wave envelope amplitude is varying stochastically with respect to the slow time τ . Accordingly, we
express the random incident wave in the simple form

ζ(x, t) = ε

2
A(τ )ei(Kx−2ω0t) + c.c., (3.20)



162 J Eng Math (2007) 58:157–166

The random amplitude A(τ ) must be determined from the incident-wave spectrum. From (3.11), the
covariance of the dimensionless increment dA (σ ) is now given by
〈
dA (σ )dA ∗(σ1)

〉 = δ(σ − σ1)S̃(σ )dσdσ1, (3.21)

where, from (3.13), one can show that the spectral-density function S̃(σ ) satisfies the normalizing condition,
∫ ∞

−∞
S̃(σ ) dσ = 1. (3.22)

The forms of (3.14), (3.21) and (3.22) are the result of introducing the factors 2 and 4 in the normalization
of A ′ and S̃′, respectively. To evaluate the complex amplitude A(τ ) numerically, we rewrite (3.19) as

A(τ ) = e−2i
τ
∞∑

m=−∞
|dA (σm)| e−iσmt−i arg[dA (σm)]. (3.23)

The prescribed spectrum S̃ is discretized into vertical strips of width 
σ and height S̃(m
σ). The frequency
of the m-th wave component σm is chosen randomly between (m−1/2)
σ and (m+1/2)
σ . The amplitude
is then calculated from∣∣∣dA (σm)

∣∣∣ = S̃
1
2 (σm)
σ , (3.24)

while the phase angle arg[dA (σm)] is chosen randomly according to a probability distribution uniform in
[0, 2π ]. More details can be found in [22, Chap. 2].

In the present study, we assume that the spectral function S̃(σ ) is Gaussian with zero mean and variance
D2:

S̃(σ ) = 1√
2πD

exp

(
− σ 2

2D2

)
, (3.25)

which depends only on the standard deviation D.

3.3 Stochastic evolution equation of trapped wave

For each realization, the trapped-wave amplitude is still given by (2.3), except that now the wave amplitude
is given by (3.19). With the transformation

B = B̂e−i
τ , (3.26)

Eq. 2.3 becomes

− i
dB̂
dτ

= cαB̂2B̂∗ + 
B̂ + cγ Â(τ )B̂∗. (3.27)

which is a stochastic differential equation. For the deterministic Landau–Stuart equation (2.3), the equi-
librium states and their linearized instability have been studied by [13] for edge waves. We now focus
attention on the statistical analysis.

4 Nonlinear resonance excited by random waves

For the complete development of the trapped-wave amplitude we must solve the non-autonomous
stochastic Landau–Stuart equation (2.3) numerically with a random complex coefficient cγ A(τ ). From
(3.26), the magnitude |B| is the same as |B̂| solved from (2.3). The statistical characteristics of the trapped-
wave amplitude |B| are determined from a large number of realizations with the phase angles in (3.19)
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Fig. 2 Samples of trapped-wave amplitude |B(τ )| for diff-
erent sets of phase angles, a = 0.5, h = 1.0. The coefficients
cα = −0.0135 + 0.1543i, cγ = 0.0769 + 0.0851i. D/|cγ | =
0.5, 
 = 0.0. Thin solid line: solution of deterministic inci-
dent wave

Fig. 3 Ensemble average and standard deviation of |B(τ )|
compared with deterministic solution. Solid curve: 〈|B|〉,
error bar: ±〈σ 〉B, dashed curve: |B| for deterministic inci-
dent wave

randomly generated from a uniform distribution between 0 and 2π and the initial value of |B| at τ = 0
randomly assigned with some small values less than 10−4.

In Fig. 2, we display three nonlinear solutions of the Landau–Stuart equation (2.3), and compare them
with the deterministic solution. Starting from an infinitesimal disturbance, the trapped-wave amplitude
|B| grows initially at a rate depending on the randomly assigned phase angle, and becomes a stationary
random process thereafter.

The observed trapped-wave amplitude |B| at an arbitrary instant τ is a random variable. Let us define
the ensemble average of the trapped-wave amplitude at time τ by

〈|B(τ )|〉 = 1
N

N∑
n=1

|Bn(τ )|, (4.1)

and the standard deviation

〈σ 〉B =
[

1
N

N∑
n=1

(
|B(τ )|n − 〈|B(τ )|〉

)2
] 1

2

. (4.2)

where n is the index of a realization and N the total number of realizations. In Fig. 3, the time development
of the ensemble average and standard variance of |B| are plotted. A total of 2048 realizations of |B| with
different phase angles are computed. It can be seen that the ensemble average increases from an infini-
tesimal disturbance and approaches a constant when τ is large, so is the variance. In comparison with the
deterministic forcing represented by the dashed line in Fig. 3, the ensemble average grows more slowly
and reaches a lower equilibrium value. These results are similar to [17] for Venice gates.

In [18], it is shown for a deterministic incident wave that the bifurcation curve representing the variation
of equilibrium action versus detuning frequency can lean either to the right or to the left, depending on
the sign of cα . Hysteresis (jump phenomenon) can occur. Figs. 4 and 5 show the equilibrium values of the
ensemble average 〈|B|〉 and the standard variance 〈σ 〉B for various narrowband width D when a = 0.30,
h = 0.50. The real part Re(cα) = −0.772 is negative and the bifurcation curve leans rightward.2 It can be

2 In [18] the ordinates of the bifurcation curves were |B|2 insead of 〈|B|〉, hence appear slightly different.
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Fig. 4 Dependence of the ensemble average of the trapped-
wave amplitude on D and 
, a = 0.30, h = 0.50. The coeffi-
cients cα = −0.772 + 0.4466i, cγ = −0.0066 + 0.1202i. The
thick curve is for the deterministic incident wave and the
thin curves are for random waves of various D/|cγ |

Fig. 5 Dependence of the ensemble standard variance of
the trapped-wave amplitude on D and 
, a = 0.30, h = 0.50.
The coefficients cα = −0.772 + 0.4466i, cγ = −0.0066 +
0.1202i

Fig. 6 Dependence of the ensemble average of the trapped-
wave amplitude on D and 
, a = 0.32, h = 1.50. The coeffi-
cients cα = 0.4911+0.2794i, cγ = 0.1265+0.020i. The thick
curve is for the deterministic incident wave and the thin
curves are for random waves of various D/|cγ |

Fig. 7 Dependence of the ensemble standard variance of
the trapped-wave amplitude on D and 
, a = 0.32, h = 1.50.
The coefficients cα = 0.4911 + 0.2794i, cγ = 0.1265 + 0.020i

seen that, as the width D of the incident wave spectrum increases, the bifurcation curve becomes flatter and
the trapped wave can be excited within a wider range of 
, but to a smaller amplitude. Both bifurcation
curves of 〈|B|〉 and 〈σ 〉B of the randomly resonated trapped wave share the same sense of leaning as the
deterministic case. However, there is no jump phenomenon in all the random cases calculated with D > 0.
Figures 6 and 7 show the results for a = 0.32 and h = 1.50 where Re(cα) = 0.4911 is positive and the
bifurcation curves lean leftward. Again there is no hysteresis, and the amplification diminishes with D.
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5 Concluding remarks

This work is an extension of our recent theory on nonlinear subharmonic resonance of perfectly trapped
waves around a vertical cylinder in a long channel ([18]). A trapped mode of natural frequency ω and
magnitude of O(ε) is excited by an much weaker O(ε2) incident wave of frequency near 2ω. The extension
here is to allow the incident wave to be random with a narrow frequency spectum centered around 2ω, as
in [17] on the mobile storm barrier of Venice. We have shown that the subharmonic resonance mechanism
can still be effective. However, if the bandwidth is large enough, the amplification ratio is small; therefore
the subharmonic mechanism becomes ineffective. Other extensions are possible. For example, one can
treat a train of deterministic incident waves of magnitude comparable to the trapped wave, i.e., O(ε) and
of frequency ω. Quadratic interaction then produces a O(ε2) wave of 2ω which can resonate the trapped
mode at O(ε3) through the same subharmonic mechanism. Although the frequencies of the forcing and the
response are the same, this mechanism is strictly nonlinear and leads to finite amplification. More generally,
one may have two O(ε) deterministic incident waves of frequencies ω1 and ω2. As long as ω1 + ω2 ≈ 2ω,
similar nonlinear resonance can occur. In nature, the total wave energy is distributed over a broad band
of frequencies. Then quadratic interactions of waves from different pairs in the broad spectrum may all
contribute to the resonance of a trapped wave. It would be worthwhile to examine further the effects of
random incident waves with a broad bandwidth. Finally, trapped waves of other types such as edge waves
on a beach and trapped modes along the mobile barrier of Venice are likely subjected to similar excitations.

The mathematical problem studied here is equivalent to that for an infinitely long array of periodically
spaced cylinders under attack by a train of normally incident plane waves. In the existing linear theory of a
related problem studied by Professor Newman and Dr Maniar [8], sychronous resonance is possible only if
the number of cylinders in an infinite sea is finite so that trapping is imperfect due to radiation damping. The
linear theory ultimiately fails in the limit of infinitely many cylinders as the resonant amplitude becomes
unbounded. We therefore hope that the present work provides a complementay view to render a more
complete picture of a facinating subject.

Acknowledgements We acknowledge with gratitude the financial support by U.S. Office of Naval Research (Grant N00014-
04-1-0077), US National Science Foundation (Grant CTS oo75713) and US-Israel BiNational Science Foundation (Grant
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